% LaTeX macro definitions for MathJax (may not render in all viewers; see above warning)
\newcommand{\E}{\mathbb{E}}
\newcommand{\cond}{\, |\, }
\newcommand{\var}{\text{var}}
\newcommand{\cov}{\text{cov}}
\newcommand{\corr}{\text{corr}}
\newcommand{\std}{\text{std}}
\newcommand{\covmat}{\boldsymbol{\Sigma}}
\newcommand{\cdf}{\Phi}
\newcommand{\Normal}{\mathcal{N}}
\newcommand{\lp}{\mathbb{L}}
\newcommand{\dlim}{\overset{D}{\to \;}}
\newcommand{\plim}{\overset{P}{\to \;}}
\newcommand{\iid}{i.i.d.}
\newcommand{\free}{f}
\newcommand{\ex}[1]{\tilde{#1}}
\newcommand{\R}[1][]{R^{#1}}
\newcommand{\Rf}{\R[\free]}
\newcommand{\Rx}[1][]{\ex{R}^{#1}}
\renewcommand{\r}[1][]{r^{\scriptscriptstyle {#1}}}
\newcommand{\rf}{\r[\free]}
\newcommand{\rx}[1][]{\ex{r}^{\scriptscriptstyle {#1}}}
\newcommand{\rlog}[1][]{{\texttt{r}^{#1}}}
\newcommand{\rflog}{\rlog[\free]}
\newcommand{\rvec}[1][]{\boldsymbol{\r[#1]}}
\newcommand{\rxvec}[1][]{\boldsymbol{\rx[#1]}}
\newcommand{\pay}[1][]{\Gamma^{\scriptscriptstyle {#1}}}
\renewcommand{\P}{\mathcal{P}}
\newcommand{\ind}[1]{_{[#1]}}
\newcommand{\notind}[1]{\ind{-#1}}
\newcommand{\coord}{\boldsymbol{\iota}}
\newcommand{\obs}{n}
\newcommand{\Nobs}{N}
\newcommand{\lag}{h}
\newcommand{\Nlag}{H}
\newcommand{\indx}{i}
\newcommand{\indxalt}{j}
\newcommand{\I}{\mathcal{I}}
\newcommand{\one}{\textbf{1}}
\newcommand{\zeros}{\textbf{0}}
\newcommand{\x}{\textbf{x}}
\newcommand{\z}{\textbf{z}}
\newcommand{\y}{\textbf{y}}
\newcommand{\w}{\textbf{w}}
\newcommand{\X}{\textbf{X}}
\newcommand{\Z}{\textbf{Z}}
\newcommand{\Y}{\textbf{Y}}
\newcommand{\W}{\textbf{W}}
\newcommand{\alphavec}{\boldsymbol{\alpha}}
\newcommand{\betavec}{\boldsymbol{\beta}}
\newcommand{\epsilonvec}{\boldsymbol{\epsilon}}
\newcommand{\sigmavec}{\boldsymbol{\sigma}}
\newcommand{\mux}{\ex{\mu}}
\newcommand{\muvec}{\boldsymbol{\mu}}
\newcommand{\muxvec}{\boldsymbol{\ex{\mu}}}
\newcommand{\muP}{\mu^p}
\newcommand{\Sigmamat}{\boldsymbol{\Sigma}}
\newcommand{\wt}{\boldsymbol{\omega}}
\newcommand{\wtx}{\boldsymbol{w}}
\newcommand{\wtxstar}{\wtx^*}
\newcommand{\wtTan}{\wt^{\tan}}
\newcommand{\wtxTan}{\wtx^{\tan}}
\newcommand{\wtGMV}{\wt^{\gmv}}
\newcommand{\mv}{\scriptscriptstyle {\subset}}
\newcommand{\MV}{$\ex{\text{MV}}\ $}
\newcommand{\MVscale}{\delta}
\newcommand{\ifac}{k}
\newcommand{\Nfacs}{k}
\newcommand{\fbeta}[1][]{\beta^{\scriptscriptstyle {#1}}}
\newcommand{\fbetavec}[1][]{\betavec^{\scriptscriptstyle {#1}}}
\newcommand{\radon}{q}
\newcommand{\mkt}{m}
\newcommand{\act}{a}
\renewcommand{\tan}{\texttt{t}}
\newcommand{\gmv}{\texttt{v}}
\newcommand{\size}{s}
\newcommand{\val}{v}
\newcommand{\up}{u}
\newcommand{\mom}{\text{mom}}
\newcommand{\orthog}{\alpha}
\newcommand{\fac}{z}
\newcommand{\facs}{\boldsymbol{z}}
\newcommand{\facmac}{f}
\newcommand{\facsmac}{\boldsymbol{f}}
\newcommand{\prem}{\lambda}
\newcommand{\premvec}{\boldsymbol{\prem}}
\newcommand{\pos}{i}
\newcommand{\hedge}{j}
\newcommand{\etavec}{\boldsymbol{\eta}}
\newcommand{\Q}{\textbf{Q}}
\newcommand{\eig}{\psi}
\newcommand{\Eig}{\Psi}
\newcommand{\eigv}{\textbf{q}}
\newcommand{\Eigv}{Q}
\newcommand{\PCwt}{\textbf{q}}
\newcommand{\PCfac}{x}
\newcommand{\VaR}{\text{VaR}}
\newcommand{\ES}{\text{ES}}
\newcommand{\Rrate}{\,\r}
\newcommand{\Rratevec}{\,\rvec}
\newcommand{\RVaR}{\, \r[\text{VaR}]}
\newcommand{\RES}{\,\r[\text{ES}]}
\newcommand{\rVaR}{\, \r[\text{VaR}]}
\newcommand{\rES}{\, \r[\text{ES}]}
\newcommand{\thresh}{\pi}
\newcommand{\quantile}{\texttt{z}_{\thresh}}
\newcommand{\gain}{\Delta V}
\newcommand{\loss}{L}
\newcommand{\lossvec}{\textbf{L}}
\newcommand{\cdfnorm}{\Phi}
\newcommand{\cdflosst}{F^\ell_\tau}
\newcommand{\cdfgaint}{F^g_\tau}
\newcommand{\cdfretst}{F^{\r}_\tau}
\newcommand{\invcdflosst}{F_\tau^{\ell(-1)}}
\newcommand{\invcdfgaint}{F_\tau^{g[-1]}}
\newcommand{\invcdfretst}{F^{\r(-1)}_\tau}
\newcommand{\mawt}{\theta}
\newcommand{\DP}{\text{DP}}
\newcommand{\n}{{(n)}}
\newcommand{\0}{(0)}
\newcommand{\1}{{(1)}}
\newcommand{\2}{{(2)}}
\newcommand{\3}{{(3)}}
\newcommand{\4}{{(4)}}
\newcommand{\5}{{(5)}}
\newcommand{\bonds}{B}
\newcommand{\fx}{S}
\newcommand{\fxlog}{\texttt{s}}
\newcommand{\meuro}{\text{\euro}}
\newcommand{\usd}{\$}
\newcommand{\for}{F}
\newcommand{\forlog}{\texttt{f}}

Fama–MacBeth#

Time-varying beta#

We want to allow for beta to vary over time.

\[\tilde{r}^i_t = \alpha^i + \boldsymbol{\beta}^{i,\boldsymbol{x}}_t \boldsymbol{x}_t + \epsilon_t^i\]

So far, we have been estimating unconditional \(\beta\)

\[\tilde{r}^i_t = \alpha^i + \boldsymbol{\beta}^{i,x} \boldsymbol{x}_t + \epsilon_t^i\]

Must choose a model for how \(\beta\) changes over time.

  • Consider stochastic vol models above.

  • Often see estimates of \(\beta_t\) using rolling window of data. 5 years?

  • Can use GARCH, other models to capture nonlinear impact.

Fama-Macbeth estimates#

The Fama-Macbeth procedure is widely used to deal with time-varying betas. \vv

  • Imposes little on the cross-sectional returns.

  • Does assume no correlation across time in returns.

  • Equivalent to certain GMM specifications under these assumptions.

Fama-Macbeth estimation#

  1. Estimate \(\beta_t\).

For each security, \(i\), estimate the time-series of \(\boldsymbol{\beta}^i_t\). This could be done for each \(t\) using a rolling window or other methods. (If using a constant \(\boldsymbol{\beta}\) just run the usual time-series regression for each security.)

\[\begin{aligned} \tilde{r}^i_t =& \alpha^i + \boldsymbol{\beta}^{i,\boldsymbol{x}}_t~ \boldsymbol{\beta}_t + \epsilon_t^i \end{aligned}\]
  1. Estimate \(\lambda,\upsilon\). (Could include an intercept here, though LFM implies no intercept.)

For each \(t\), estimate a cross-sectional regression to obtain \(\lambda_t\) and estimates of the \(N\) pricing errors, \(\upsilon_t^i\).

\[\tilde{r}^i_t = \boldsymbol{\beta}^{i,\boldsymbol{x}}_t \boldsymbol{\lambda}_t + \upsilon^i_t\]

Illustration of time and cross regressions#

Use sample means of the estimates:

\[\hat{\lambda} = \frac{1}{T}\sum_{t=1}^T \lambda_t,\; \; \hat{\upsilon}^i = \frac{1}{T}\sum_{t=1}^T \upsilon^i_t\]
  • This allowed flexible model for \(\boldsymbol{\beta}^{i,\boldsymbol{x}}_t\).

  • Running \(t\) cross-sectional regressions allowed \(t\) (unrelated) estimates \(\lambda_t\) and \(\upsilon_t\).

Fama-MacBeth standard errors#

Get standard errors of the estimates by using Law of Large Numbers for the sample means, \(\hat{\lambda}\) and \(\hat{\upsilon}\).

\[\begin{split}\begin{aligned} s.e.(\hat{\lambda}) =& \frac{1}{\sqrt{T}}\sigma_{\lambda} \\ =& \frac{1}{T}\sqrt{\sum_{t=1}^T\left(\lambda_t - \hat{\lambda}\right)^2} \end{aligned}\end{split}\]
  • These standard errors correct for cross-sectional correlation.

  • If there is no time-series correlation in the OLS errors, then the Fama-Macbeth standard errors will equal the GMM errors.

Beyond Fama-MacBeth#

The Fama-MacBeth, two-pass, regression approach is very popular to incorporate dynamic betas. (Note that there would be no point of using Fama-MacBeth if we are using full-sample time-series betas. This will just give us the usual cross-sectional estimates.)

  • It is easy to implement.

  • It is (relatively!) easy to understand.

  • It gives reasonable estimates of the standard errors.

If we want to calculate more precise standard errors, we could easily use the Generalized Method of Moments (GMM).

  • GMM would account for any serial correlation.

  • GMM would account for the imprecision of the first-stage (time-series) estimates.

References#

  • Back, Kerry. Asset Pricing and Portfolio Choice Theory. 2010. Chapter 6.

  • Bodie, Kane, and Marcus. Investments. 2011. Chapters 9 and 10.

  • Cochrane. Discount Rates. Journal of Finance. August 2011.

  • Frazzini, Adrea and Lasse Pedersen. Betting Against Beta. Working Paper. October 2011.