Lecture 7: Forecasting Returns#

This notebook defines LaTeX macros for MathJax below so formulas render correctly.

\[ \newcommand{\E}{\mathbb{E}} \newcommand{\cond}{\, |\, } \newcommand{\var}{\text{var}} \newcommand{\cov}{\text{cov}} \newcommand{\corr}{\text{corr}} \newcommand{\std}{\text{std}} \newcommand{\covmat}{\boldsymbol{\Sigma}} \newcommand{\cdf}{\Phi} \newcommand{\Normal}{\mathcal{N}} \newcommand{\lp}{\mathbb{L}} \newcommand{\dlim}{\overset{D}{\to \;}} \newcommand{\plim}{\overset{P}{\to \;}} \newcommand{\iid}{i.i.d.} \newcommand{\free}{f} \newcommand{\ex}[1]{\tilde{#1}} \newcommand{\R}[1][]{R^{#1}} \newcommand{\Rf}{\R[\free]} \newcommand{\Rx}[1][]{\ex{R}^{#1}} \renewcommand{\r}[1][]{r^{\scriptscriptstyle {#1}}} \newcommand{\rf}{\r[\free]} \newcommand{\rx}[1][]{\ex{r}^{\scriptscriptstyle {#1}}} \newcommand{\rlog}[1][]{{\texttt{r}^{#1}}} \newcommand{\rflog}{\rlog[\free]} \newcommand{\rvec}[1][]{\boldsymbol{\r[#1]}} \newcommand{\rxvec}[1][]{\boldsymbol{\rx[#1]}} \newcommand{\pay}[1][]{\Gamma^{\scriptscriptstyle {#1}}} \renewcommand{\P}{\mathcal{P}} \newcommand{\ind}[1]{_{[#1]}} \newcommand{\notind}[1]{\ind{-#1}} \newcommand{\coord}{\boldsymbol{\iota}} \newcommand{\obs}{n} \newcommand{\Nobs}{N} \newcommand{\lag}{h} \newcommand{\Nlag}{H} \newcommand{\indx}{i} \newcommand{\indxalt}{j} \newcommand{\I}{\mathcal{I}} \newcommand{\one}{\textbf{1}} \newcommand{\zeros}{\textbf{0}} \newcommand{\x}{\textbf{x}} \newcommand{\z}{\textbf{z}} \newcommand{\y}{\textbf{y}} \newcommand{\w}{\textbf{w}} \newcommand{\X}{\textbf{X}} \newcommand{\Z}{\textbf{Z}} \newcommand{\Y}{\textbf{Y}} \newcommand{\W}{\textbf{W}} \newcommand{\alphavec}{\boldsymbol{\alpha}} \newcommand{\betavec}{\boldsymbol{\beta}} \newcommand{\epsilonvec}{\boldsymbol{\epsilon}} \newcommand{\sigmavec}{\boldsymbol{\sigma}} \newcommand{\mux}{\ex{\mu}} \newcommand{\muvec}{\boldsymbol{\mu}} \newcommand{\muxvec}{\boldsymbol{\ex{\mu}}} \newcommand{\muP}{\mu^p} \newcommand{\Sigmamat}{\boldsymbol{\Sigma}} \newcommand{\wt}{\boldsymbol{\omega}} \newcommand{\wtx}{\boldsymbol{w}} \newcommand{\wtxstar}{\wtx^*} \newcommand{\wtTan}{\wt^{\tan}} \newcommand{\wtxTan}{\wtx^{\tan}} \newcommand{\wtGMV}{\wt^{\gmv}} \newcommand{\mv}{\scriptscriptstyle {\subset}} \newcommand{\MV}{$\ex{\text{MV}}\ $} \newcommand{\MVscale}{\delta} \newcommand{\ifac}{k} \newcommand{\Nfacs}{k} \newcommand{\fbeta}[1][]{\beta^{\scriptscriptstyle {#1}}} \newcommand{\fbetavec}[1][]{\betavec^{\scriptscriptstyle {#1}}} \newcommand{\radon}{q} \newcommand{\mkt}{m} \newcommand{\act}{a} \renewcommand{\tan}{\texttt{t}} \newcommand{\gmv}{\texttt{v}} \newcommand{\size}{s} \newcommand{\val}{v} \newcommand{\up}{u} \newcommand{\mom}{\text{mom}} \newcommand{\orthog}{\alpha} \newcommand{\fac}{z} \newcommand{\facs}{\boldsymbol{z}} \newcommand{\facmac}{f} \newcommand{\facsmac}{\boldsymbol{f}} \newcommand{\prem}{\lambda} \newcommand{\premvec}{\boldsymbol{\prem}} \newcommand{\pos}{i} \newcommand{\hedge}{j} \newcommand{\etavec}{\boldsymbol{\eta}} \newcommand{\Q}{\textbf{Q}} \newcommand{\eig}{\psi} \newcommand{\Eig}{\Psi} \newcommand{\eigv}{\textbf{q}} \newcommand{\Eigv}{Q} \newcommand{\PCwt}{\textbf{q}} \newcommand{\PCfac}{x} \newcommand{\VaR}{\text{VaR}} \newcommand{\ES}{\text{ES}} \newcommand{\Rrate}{\,\r} \newcommand{\Rratevec}{\,\rvec} \newcommand{\RVaR}{\, \r[\text{VaR}]} \newcommand{\RES}{\,\r[\text{ES}]} \newcommand{\rVaR}{\, \r[\text{VaR}]} \newcommand{\rES}{\, \r[\text{ES}]} \newcommand{\thresh}{\pi} \newcommand{\quantile}{\texttt{z}_{\thresh}} \newcommand{\gain}{\Delta V} \newcommand{\loss}{L} \newcommand{\lossvec}{\textbf{L}} \newcommand{\cdfnorm}{\Phi} \newcommand{\cdflosst}{F^\ell_\tau} \newcommand{\cdfgaint}{F^g_\tau} \newcommand{\cdfretst}{F^{\r}_\tau} \newcommand{\invcdflosst}{F_\tau^{\ell(-1)}} \newcommand{\invcdfgaint}{F_\tau^{g[-1]}} \newcommand{\invcdfretst}{F^{\r(-1)}_\tau} \newcommand{\mawt}{\theta} \newcommand{\DP}{\text{DP}} \newcommand{\n}{{(n)}} \newcommand{\0}{(0)} \newcommand{\1}{{(1)}} \newcommand{\2}{{(2)}} \newcommand{\3}{{(3)}} \newcommand{\4}{{(4)}} \newcommand{\5}{{(5)}} \newcommand{\bonds}{B} \newcommand{\fx}{S} \newcommand{\fxlog}{\texttt{s}} \newcommand{\meuro}{\text{\euro}} \newcommand{\usd}{\$} \newcommand{\for}{F} \newcommand{\forlog}{\texttt{f}} \]

Title#

Outline#

  • Forecasting Regressions

  • Dividend-Yield Forecasting

Risk premia across assets#

The \textcolor{structure}{risk premium} of an asset, \(i\), is defined as the \textcolor{structure}{expected} excess return,

\[ \E\left[\rx[i]\right] \]
  • \textcolor{structure}{Linear Factor Models} (LFM’s) describe how risk premia vary across assets.

  • Most theories attribute the variation to difference in risks.

Example: CAPM#

The CAPM says risk premia across different assets \(i\) are:

\[ \E\left[\rx[i]\right] = \left(\fbeta[i,\mkt]\right)\lambda_\mkt \]

All risk premia are proportional (by beta) to the market risk premium.

  • But the above form does not condition on time.

  • The beta and both risk premia are estimated as stationary time series averages.

Risk premia over time#

So how do risk premia change over time?

\[ \E_t\left[\rx[i]_{t+1}\right] \]
  • Is the expected excess return of asset \(i\) always the same, no matter what period the investor considers?

\[ \E_t\left[\rx[i]_{t+1}\right] = \E\left[\rx[i]\right] \]
  • Or is the risk premium of an asset a function of time-varying factors, \(x_t\)?

\[ \E_t\left[\rx[i]_{t+1}\right] = f\left(x_{t}\right) \]

Linear methods#

If we believe risk premia vary over time, we must specify a functional form for \(f(x)\) in

\[ \E_t\left[\rx[i]_{t+1}\right] = f\left(x_{t}\right) \]

as well as specifying the factor(s), \(x_t\).

  • If we specify a linear function, the statistics/numerics are much easier.

  • Recall that a linear regression gives the best linear estimator of such a function \(f(x)\).

Regressions to measure conditional expectations#

Suppose

\[ y = \alpha + \beta x + \epsilon \]

Then the expectation of \(y\) conditional on \(x\) is

\[ \E\left[y|\ x\right] = \alpha + \beta x \]

Thus, if \(\beta\ne 0\), the conditional expectation varies as \(x\) varies.

Forecasting regressions#

A \textcolor{structure}{forecasting} regression for returns is of the form:

\[ \rx[i]_{t+1} = \alpha + \beta x_t +\epsilon_{t+1} \]
  • If \(\beta\ne 0\), then the conditional expectation of \(\rx[i]_{t+1}\) varies over time as \(x_t\) varies.

\[ \E\left[\rx[i]_{t+1}|\ x_t\right] = \alpha + \beta x_t \]
  • We similarly used regressions in LFM’s to discover variation in risk premia across assets.

Classic view#

The \textcolor{structure}{classic view} says risk premia are constant over time.

  • Thus, in any forecasting regression of returns, \textcolor{structure}{\(\beta=0\)}.

\[ \rx[i]_{t+1} = \alpha + \beta x_t +\epsilon_{t+1} \]
  • The classic view also says price growth is a \textcolor{structure}{random walk} (with drift.)

\[ \log P_{t+1} - \log P_t = \text{constant} + \epsilon_{t+1} \]

So \(\E_t\left[\frac{P_{t+1}}{P_t}\right] = \text{constant}\).

Testing the classic view#

Test the classic view on the risk premium of the market index, \(\lambda_\mkt\).

  • Consider using this period’s return to forecast that of next period:

\[ \rx[\mkt]_{t+1}= a +\beta \rx[\mkt]_t +\epsilon_{t+1} \]
  • This test of the classic view of market return predictability uses the lagged return as the predictor variable.

Evidence: Is the market return autocorrelated?#

\[ \r_{t+1}= a +\beta \r_t +\epsilon_{t+1} \]

\begin{table}[h] \label{tab:uni} \caption{Auto-regression estimates for market returns, excess market returns.} \begin{center} \begin{tabular*}{.75\textwidth}{@{\extracolsep{\fill}}lrrclrr} \hline \noalign{} & \multicolumn{2}{c}{Monthly} & & & \multicolumn{2}{c}{Annual} \ \cline{2-3} \cline{6-7} \noalign{} & \(\r[\mkt]\) & \(\rx[\mkt]\) & & & \(\r[\mkt]\) & \(\rx[\mkt]\)\ \noalign{} \(b\) & 0.11 & 0.12 & & & 0.01 & 0.02\ \(t(b)\) & 2.02 & 2.05 & & & 0.09 & 0.15\ \(R^2\) & 0.01 & 0.01 & & & 0.00 & 0.00 \ \hline\hline \end{tabular*} \end{center} \end{table}

  • CRSP value-weighted equity markets, 1927-2010.

  • CRSP 3-month U.S. treasury bill.

  • GMM standard errors.

Evidence: Is the risk-free return autocorrelated?#

\[ \r[f]_{t,t+1}= a +\beta \r[f]_{t-1,t} +\epsilon_{t+1} \]

\begin{table}[h] \label{tab:uni} \caption{Auto-regression estimates for the risk-free return.} \begin{center} \begin{tabular*}{.5\textwidth}{@{\extracolsep{\fill}}lrclr} \hline \noalign{} & Monthly & & & Annual \ \noalign{} \(b\) & 0.89 & & & 0.92 \ \(t(b)\) & 30.38 & & & 13.31 \ \(R^2\) & 0.80 & & & 0.83 \ \hline\hline \end{tabular*} \end{center} \end{table}

  • CRSP value-weighted equity markets, 1927-2010.

  • CRSP 3-month U.S. treasury bill.

  • GMM standard errors.

Conclusions from the return auto-regressions#

The excess market return has a regression coefficient near zero, which fits the classic view of risk premia.

  • High returns do not indicate particularly high or low returns going forward.

  • The annual data estimates suggest stock returns, particularly excess returns, are i.i.d.

  • The monthly data shows some autocorrelation, but not much explanatory power.

  • Furthermore, trading costs would seem to make this small predictability a novelty of no economic importance.

Other Ways to See Predictability?#

For many years, academics and practitioners have found these same results.

  • This reinforced classic view that returns are unpredictable—that prices are essentially a random walk.

  • But even if past returns do not predict future returns, how about some other predictor, \(x_t\)?

  • How about forecasting at longer horizons?

Outline#

  • Forecasting Regressions

  • Dividend-Yield Forecasting

Signals#

Notwithstanding the “classic” view, asset managers use many signals to try to forecast returns with linear regression.

  • Macroeconomic signals

  • Asset return signals

  • Short-term signals / forecast horizons

  • Long-term signals / forecast horizons

The dividend-price ratio, (also known as the dividend-yield,) is one of the most famous examples.

Dividend-yield#

The \textcolor{structure}{dividend-yield} \(\DP_t\) refers to the \textcolor{structure}{dividend-price} ratio, \(\frac{D_t}{P_t}\).

  • Other common cash-flow-to-value measures include earnings-price and book-price (book-market) ratios.

  • Obviously, using value-to-cashflow ratios such as dividend-price works the same.

  • For an individual stock, dividends are not paid continuously, but for the market index, there is a steady stream for analysis.

Returns and the dividend yield#

By definition, stock returns are

\[\begin{split} \begin{aligned} R_{t+1}\equiv & \frac{P_{t+1}+D_{t+1}}{P_t}\\ R_{t+1}\equiv & \left(\frac{D_t}{P_t}\right)\frac{D_{t+1}}{D_t} + \frac{P_{t+1}}{P_t} \end{aligned} \end{split}\]

This identity holds for horizon, \(t+k\), and in expectation:

\[ \begin{aligned} \E_t\left[R_{t,t+k}\right] =&~ \DP_t~ \E_t\left[\frac{D_{t+k}}{D_t}\right] + \E_t\left[\frac{P_{t+k}}{P_t}\right] \end{aligned} \]

Classic view of dividend yield#

In the classic view of risk premia,

  • Expected returns are constant: \(\E_t\left[\r_{t,t+k}\right] = \theta_r\).

  • Price appreciation is a random walk, \(\E_t\left[\frac{P_{t+k}}{P_t}\right] = \theta_p\).

\[ \begin{aligned} \theta_r =&~ \DP_t~ \E_t\left[\frac{D_{t+k}}{D_t}\right] + \theta_p \end{aligned} \]

So under the classic view,

  • An increase in the dividend-yield is offset by a decrease in expected dividend growth.

Evidence: Stock-market Predictability#

\label{slide:retpredict}

\[ \rx[\mkt]_{t,t+k}= a +\beta \DP_t +\epsilon_{t+k} \]

\begin{table}[h] \caption{Stock Return Predictability Regressions.}

\label{tab:retpredict} \begin{center} \begin{tabular*}{.8\textwidth}{@{\extracolsep{\fill}}lrrrr} \hline\noalign{} & \multicolumn{4}{c}{Horizon} \ \cline{2-5}\noalign{} & 1 month & 1 year & 5 years\ \noalign{} \(b\) & 0.25 & 4.08 & 21.27\ \(t(b)\) & 1.01 & 2.45 & 4.43 \ \(R^2\) & .01 & .09 & .31 & \ \hline\hline \end{tabular*} \end{center} \end{table}

Regression of cumulative excess returns on dividend-price ratio.

  • NYSE/AMEX/NASDAQ value-weighted equity markets.

  • Monthly data, 1927-2010.

  • GMM standard errors.

Interpreting the regression estimates#

\underline{At a one-month horizon,}

  • Slope coefficient is insignificant—statistically and economically.

  • Agrees with the implications of the auto-regression.

  • More evidence seemingly supportive of the classic view.

\underline{At longer horizons,}

  • Coefficient is economically significant.

  • At one-year, a one-point increase in dividend-price forecasts a four-point increase in returns!

Illustration of return predictability#

Figure placeholder for 'Illustration of return predictability'

Modern view of dividend yield#

The empirical evidence above shows:

  • Expected returns increase one-for-one with the dividend-yield.

  • This is not offset by dividend growth or price appreciation.

  • Instead, estimates show prices move the wrong way—increase expected returns even more.

\[ \begin{aligned} \E_t\left[R_{t,t+k}\right] =&~ \DP_t~ \E_t\left[\frac{D_{t+k}}{D_t}\right] + \E_t\left[\frac{P_{t+k}}{P_t}\right] \end{aligned} \]

When prices are low, we (used to / now) expect…#

Figure placeholder for 'When prices are low, we (used to / now) expect...'

Long Horizons as a Way to See Predictability#

Predictability of market returns by dividend-yield only seen in long horizons regressions.

  • Due to persistent nature of the forecasting variable, \(\DP_t\).

  • Autoregressive coefficient at a monthly frequency is about .98!

\[ \DP_tt = a + b~ \DP_t + \epsilon_{t+1} \]

Other Forecasting Variables?#

Other variables seem to have similar ability to forecast returns.

  • Cyclically-adjusted price-earnings ratios

  • Macro-economic indicators. (Investment, consumption, etc.)

  • Inflation and rates. (The ``Fed Model’’)

Statistical concerns#

The dividend-price predictability is controversial.

  • DP is a persistent variable, (high autocorrelation.)

  • Regressions where \(x\) has high autocorrelation can be biased or mis-specified.

This is a very active area of research to find the best predicting variables and models.

References#

  • Campbell, John. Financial Decisions. 2016. Chapter 5.

  • Cochrane, John. Asset Pricing. 2005. Chapters 12, 20.1.

  • Cochrane, John. Discount Rates. 2011.

  • Tsay, Ruey. Analysis of Financial Time Series. 2010. Chapters 1, 7.