Lecture : Forecasting Returns

Mark Hendricks

FINM 36700: Portfolio Management

Outline

Forecasting Regressions

Dividend-Yield Forecasting

Risk premia across assets

The risk premium of an asset, i, is defined as the expected excess return,

$$\mathbb{E}\left[\tilde{r}^i\right]$$

- ► Linear Factor Models (LFM's) describe how risk premia vary across assets.
- ▶ Most theories attribute the variation to difference in risks.

Example: CAPM

The CAPM says risk premia across different assets *i* are:

$$\mathbb{E}\left[\tilde{r}^{i}\right]=\left(\beta^{i,m}\right)\lambda_{m}$$

All risk premia are proportional (by beta) to the market risk premium.

- ▶ But the above form does not condition on time.
- ► The beta and both risk premia are estimated as stationary time series averages.

Risk premia over time

So how do risk premia change over time?

$$\mathbb{E}_t\left[\tilde{r}_{t+1}^i\right]$$

► Is the expected excess return of asset *i* always the same, no matter what period the investor considers?

$$\mathbb{E}_{t}\left[\widetilde{r}_{t+1}^{i}\right]=\mathbb{E}\left[\widetilde{r}^{i}\right]$$

ightharpoonup Or is the risk premium of an asset a function of time-varying factors, x_t ?

$$\mathbb{E}_{t}\left[\tilde{r}_{t+1}^{i}\right] = f\left(x_{t}\right)$$

Linear methods

If we believe risk premia vary over time, we must specify a functional form for f(x) in

$$\mathbb{E}_{t}\left[\tilde{r}_{t+1}^{i}\right]=f\left(x_{t}\right)$$

as well as specifying the factor(s), x_t .

- ▶ If we specify a linear function, the statistics/numerics are much easier.
- ▶ Recall that a linear regression gives the best linear estimator of such a function f(x).

Regressions to measure conditional expectations

Suppose

$$y = \alpha + \beta x + \epsilon$$

Then the expectation of y conditional on x is

$$\mathbb{E}\left[\mathbf{y}|\ \mathbf{x}\right] = \alpha + \beta \mathbf{x}$$

Thus, if $\beta \neq 0$, the conditional expectation varies as x varies.

Hendricks, FINM 36700: Lecture 7/28

Forecasting regressions

A forecasting regression for returns is of the form:

$$\tilde{r}_{t+1}^i = \alpha + \beta x_t + \epsilon_{t+1}$$

▶ If $\beta \neq 0$, then the conditional expectation of \tilde{r}_{t+1}^i varies over time as x_t varies.

$$\mathbb{E}\left[\tilde{r}_{t+1}^{i} \mid x_{t}\right] = \alpha + \beta x_{t}$$

► We similarly used regressions in LFM's to discover variation in risk premia across assets.

Classic view

The classic view says risk premia are constant over time.

▶ Thus, in any forecasting regression of returns, $\beta = 0$.

$$\tilde{r}_{t+1}^i = \alpha + \beta x_t + \epsilon_{t+1}$$

► The classic view also says price growth is a random walk (with drift.)

$$\log P_{t+1} - \log P_t = \text{constant} + \epsilon_{t+1}$$

So
$$\mathbb{E}_t \left[\frac{P_{t+1}}{P_t} \right] = \text{constant}.$$

Hendricks, FINM 36700: Lecture 9/28

Testing the classic view

Test the classic view on the risk premium of the market index, λ_m .

Consider using this period's return to forecast that of next period:

$$\tilde{r}_{t+1}^m = a + \beta \tilde{r}_t^m + \epsilon_{t+1}$$

► This test of the classic view of market return predictability uses the lagged return as the predictor variable.

Evidence: Is the market return autocorrelated?

$$r_{t+1} = a + \beta r_t + \epsilon_{t+1}$$

Table: Auto-regression estimates for market returns, excess market returns.

	Monthly		Ann	Annual	
	r ^m	\widetilde{r}^m	r ^m	$ ilde{r}^{\scriptscriptstyle m}$	
b	0.11	0.12	0.01	0.02	
$t(b)$ R^2	2.02	2.05	0.09	0.15	
R^2	0.01	0.01	0.00	0.00	

- ► CRSP value-weighted equity markets, 1927-2010.
- ► CRSP 3-month U.S. treasury bill.
- ► GMM standard errors.

Evidence: Is the risk-free return autocorrelated?

$$r_{t,t+1}^{f} = a + \beta r_{t-1,t}^{f} + \epsilon_{t+1}$$

Table: Auto-regression estimates for the risk-free return.

	Monthly	Annual
Ь	0.89	0.92
t(b)	30.38	13.31
R^2	0.80	0.83

- ► CRSP value-weighted equity markets, 1927-2010.
- ► CRSP 3-month U.S. treasury bill.
- ► GMM standard errors.

Conclusions from the return auto-regressions

The excess market return has a regression coefficient near zero, which fits the classic view of risk premia.

- ► High returns do not indicate particularly high or low returns going forward.
- ► The annual data estimates suggest stock returns, particularly excess returns, are i.i.d.
- ► The monthly data shows some autocorrelation, but not much explanatory power.
- ► Furthermore, trading costs would seem to make this small predictability a novelty of no economic importance.

Other Ways to See Predictability?

For many years, academics and practitioners have found these same results.

- This reinforced classic view that returns are unpredictable—that prices are essentially a random walk.
- ▶ But even if past returns do not predict future returns, how about some other predictor, x_t ?
- ► How about forecasting at longer horizons?

Outline

Forecasting Regressions

Dividend-Yield Forecasting

Signals

Notwithstanding the "classic" view, asset managers use many signals to try to forecast returns with linear regression.

- ► Macroeconomic signals
- Asset return signals
- ► Short-term signals / forecast horizons
- ► Long-term signals / forecast horizons

The dividend-price ratio, (also known as the dividend-yield,) is one of the most famous examples.

Dividend-yield

The dividend-yield DP_t refers to the dividend-price ratio, $\frac{D_t}{P_t}$.

- Other common cash-flow-to-value measures include earnings-price and book-price (book-market) ratios.
- Obviously, using value-to-cashflow ratios such as dividend-price works the same.
- ► For an individual stock, dividends are not paid continuously, but for the market index, there is a steady stream for analysis.

Returns and the dividend yield

By definition, stock returns are

$$\begin{split} R_{t+1} &\equiv \frac{P_{t+1} + D_{t+1}}{P_t} \\ R_{t+1} &\equiv \left(\frac{D_t}{P_t}\right) \frac{D_{t+1}}{D_t} + \frac{P_{t+1}}{P_t} \end{split}$$

This identity holds for horizon, t + k, and in expectation:

$$\mathbb{E}_{t}\left[R_{t,t+k}\right] = \mathsf{DP}_{t} \; \mathbb{E}_{t} \left[\frac{D_{t+k}}{D_{t}}\right] + \mathbb{E}_{t} \left[\frac{P_{t+k}}{P_{t}}\right]$$

Classic view of dividend yield

In the classic view of risk premia,

- Expected returns are constant: $\mathbb{E}_t \left[r_{t,t+k} \right] = \theta_r$.
- lacksquare Price appreciation is a random walk, $\mathbb{E}_t\left[rac{P_{t+k}}{P_t}
 ight]= heta_p$.

$$\theta_r = \mathsf{DP}_t \; \mathbb{E}_t \left[rac{D_{t+k}}{D_t}
ight] + \theta_{P}$$

So under the classic view,

► An increase in the dividend-yield is offset by a decrease in expected dividend growth.

Evidence: Stock-market Predictability

$$\tilde{r}_{t,t+k}^{m} = a + \beta \mathsf{DP}_{t} + \epsilon_{t+k}$$

Table: Stock Return Predictability Regressions.

	Horizon				
	1 month	1 year	5 years		
b	0.25	4.08	21.27		
t(b)	1.01	2.45	4.43		
R^2	.01	.09	.31		

Regression of cumulative excess returns on dividend-price ratio.

- ► NYSE/AMEX/NASDAQ value-weighted equity markets.
- ► Monthly data, 1927-2010.
- GMM standard errors.

Interpreting the regression estimates

At a one-month horizon,

- ► Slope coefficient is insignificant—statistically and economically.
- Agrees with the implications of the auto-regression.
- ► More evidence seemingly supportive of the classic view.

At longer horizons,

- Coefficient is economically significant.
- ► At one-year, a one-point increase in dividend-price forecasts a four-point increase in returns!

Illustration of return predictability

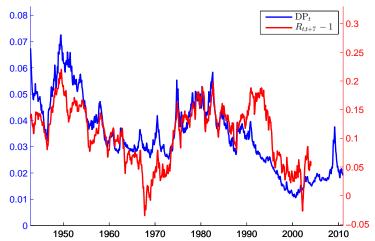


Figure: Market dividend-price ratio plotted against the next security of cumulative return. CRSP monthly data, 1927-2010.

Modern view of dividend yield

The empirical evidence above shows:

- Expected returns increase one-for-one with the dividend-yield.
- ▶ This is not offset by dividend growth or price appreciation.
- ► Instead, estimates show prices move the wrong way—increase expected returns even more.

$$\mathbb{E}_{t}\left[R_{t,t+k}\right] = \mathsf{DP}_{t} \; \mathbb{E}_{t}\left[\frac{D_{t+k}}{D_{t}}\right] + \mathbb{E}_{t}\left[\frac{P_{t+k}}{P_{t}}\right]$$

When prices are low, we (used to / now) expect...

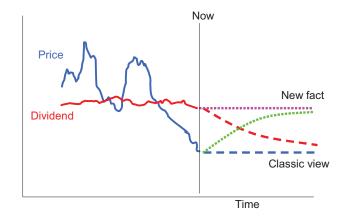


Figure: Source: Cochrane (2012)

Long Horizons as a Way to See Predictability

Predictability of market returns by dividend-yield only seen in long horizons regressions.

- ightharpoonup Due to persistent nature of the forecasting variable, DP_t .
- ► Autoregressive coefficient at a monthly frequency is about .98!

$$DP_t t = a + b DP_t + \epsilon_{t+1}$$

Other Forecasting Variables?

Other variables seem to have similar ability to forecast returns.

- Cyclically-adjusted price-earnings ratios
- ► Macro-economic indicators. (Investment, consumption, etc.)
- ▶ Inflation and rates. (The "Fed Model")

Statistical concerns

The dividend-price predictability is controversial.

- ▶ DP is a persistent variable, (high autocorrelation.)
- Regressions where x has high autocorrelation can be biased or mis-specified.

This is a very active area of research to find the best predicting variables and models.

References

- ► Campbell, John. *Financial Decisions*. 2016. Chapter 5.
- ► Cochrane, John. Asset Pricing. 2005. Chapters 12, 20.1.
- Cochrane, John. Discount Rates. 2011.
- ► Tsay, Ruey. *Analysis of Financial Time Series*. 2010. Chapters 1, 7.